{ "cells": [ { "cell_type": "markdown", "metadata": { "_cell_guid": "881c55fd-3b61-de77-7963-190298f11b66", "_uuid": "3668ab7cd3e8c4788fe6fe26b5848b6089cde62b" }, "source": [ "[![AnalyticsDojo](https://github.com/rpi-techfundamentals/spring2019-materials/blob/master/fig/final-logo.png?raw=1)](http://www.analyticsdojo.com)\n", "

Introduction to R - Titanic Baseline

\n", "

rpi.analyticsdojo.com

" ] }, { "cell_type": "markdown", "metadata": { "_cell_guid": "e4366588-27f9-a4e3-4d02-1b660e1fd226", "_uuid": "2c7461c172401b7654f874b6de16b6c6b4d41a6e" }, "source": [ "## Running Code using Kaggle Notebooks\n", "- Kaggle utilizes Docker to create a fully functional environment for hosting competitions in data science.\n", "- You could download/run kaggle/python docker image from [GitHub](https://github.com/kaggle/docker-python) and run it as an alternative to the standard Jupyter Stack for Data Science we have been using.\n", "- Kaggle has created an incredible resource for learning analytics. You can view a number of *toy* examples that can be used to understand data science and also compete in real problems faced by top companies. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "_cell_guid": "193191ca-9119-56cb-1133-3c356f2300ad", "_uuid": "3448fcc64b74a564cc35f7d9586e75e853b84642", "collapsed": true }, "outputs": [], "source": [ "train <- read.csv('../../input/train.csv', stringsAsFactors = F)\n", "test <- read.csv('../../input/test.csv', stringsAsFactors = F)" ] }, { "cell_type": "markdown", "metadata": { "_cell_guid": "21a68add-20c7-984a-7cb3-a21c0dd80cb0", "_uuid": "a2ba10a5bb516a208de6e6c7a20fdab86089ab4a" }, "source": [ "## `train` and `test` set on Kaggle\n", "- The `train` file contains a wide variety of information that might be useful in understanding whether they survived or not. It also includes a record as to whether they survived or not.\n", "- The `test` file contains all of the columns of the first file except whether they survived. Our goal is to predict whether the individuals survived." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "_cell_guid": "d12daf5f-88c7-2f45-e106-4052d23c0a0d", "_uuid": "21b04f0aaa9cfa11948db6c185f2225cba86a718" }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
1 0 3 Braund, Mr. Owen Harris male 22 1 0 A/5 21171 7.2500 S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer)female 38 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26 0 0 STON/O2. 3101282 7.9250 S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0 113803 53.1000 C123 S
5 0 3 Allen, Mr. William Henry male 35 0 0 373450 8.0500 S
6 0 3 Moran, Mr. James male NA 0 0 330877 8.4583 Q
\n" ], "text/latex": [ "\\begin{tabular}{r|llllllllllll}\n", " PassengerId & Survived & Pclass & Name & Sex & Age & SibSp & Parch & Ticket & Fare & Cabin & Embarked\\\\\n", "\\hline\n", "\t 1 & 0 & 3 & Braund, Mr. Owen Harris & male & 22 & 1 & 0 & A/5 21171 & 7.2500 & & S \\\\\n", "\t 2 & 1 & 1 & Cumings, Mrs. John Bradley (Florence Briggs Thayer) & female & 38 & 1 & 0 & PC 17599 & 71.2833 & C85 & C \\\\\n", "\t 3 & 1 & 3 & Heikkinen, Miss. Laina & female & 26 & 0 & 0 & STON/O2. 3101282 & 7.9250 & & S \\\\\n", "\t 4 & 1 & 1 & Futrelle, Mrs. Jacques Heath (Lily May Peel) & female & 35 & 1 & 0 & 113803 & 53.1000 & C123 & S \\\\\n", "\t 5 & 0 & 3 & Allen, Mr. William Henry & male & 35 & 0 & 0 & 373450 & 8.0500 & & S \\\\\n", "\t 6 & 0 & 3 & Moran, Mr. James & male & NA & 0 & 0 & 330877 & 8.4583 & & Q \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | \n", "|---|---|---|---|---|---|\n", "| 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22 | 1 | 0 | A/5 21171 | 7.2500 | | S | \n", "| 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Thayer) | female | 38 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | \n", "| 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26 | 0 | 0 | STON/O2. 3101282 | 7.9250 | | S | \n", "| 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35 | 1 | 0 | 113803 | 53.1000 | C123 | S | \n", "| 5 | 0 | 3 | Allen, Mr. William Henry | male | 35 | 0 | 0 | 373450 | 8.0500 | | S | \n", "| 6 | 0 | 3 | Moran, Mr. James | male | NA | 0 | 0 | 330877 | 8.4583 | | Q | \n", "\n", "\n" ], "text/plain": [ " PassengerId Survived Pclass\n", "1 1 0 3 \n", "2 2 1 1 \n", "3 3 1 3 \n", "4 4 1 1 \n", "5 5 0 3 \n", "6 6 0 3 \n", " Name Sex Age SibSp Parch\n", "1 Braund, Mr. Owen Harris male 22 1 0 \n", "2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0 \n", "3 Heikkinen, Miss. Laina female 26 0 0 \n", "4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0 \n", "5 Allen, Mr. William Henry male 35 0 0 \n", "6 Moran, Mr. James male NA 0 0 \n", " Ticket Fare Cabin Embarked\n", "1 A/5 21171 7.2500 S \n", "2 PC 17599 71.2833 C85 C \n", "3 STON/O2. 3101282 7.9250 S \n", "4 113803 53.1000 C123 S \n", "5 373450 8.0500 S \n", "6 330877 8.4583 Q " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(train)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "_cell_guid": "17dca1d6-ac00-2342-bfa9-00739d8b2255", "_uuid": "92fbe1534e780db62d5d81ddb356fd5b45ba166a" }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
PassengerIdPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
892 3 Kelly, Mr. James male 34.5 0 0 330911 7.8292 Q
893 3 Wilkes, Mrs. James (Ellen Needs) female 47.0 1 0 363272 7.0000 S
894 2 Myles, Mr. Thomas Francis male 62.0 0 0 240276 9.6875 Q
895 3 Wirz, Mr. Albert male 27.0 0 0 315154 8.6625 S
896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist)female 22.0 1 1 3101298 12.2875 S
897 3 Svensson, Mr. Johan Cervin male 14.0 0 0 7538 9.2250 S
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllll}\n", " PassengerId & Pclass & Name & Sex & Age & SibSp & Parch & Ticket & Fare & Cabin & Embarked\\\\\n", "\\hline\n", "\t 892 & 3 & Kelly, Mr. James & male & 34.5 & 0 & 0 & 330911 & 7.8292 & & Q \\\\\n", "\t 893 & 3 & Wilkes, Mrs. James (Ellen Needs) & female & 47.0 & 1 & 0 & 363272 & 7.0000 & & S \\\\\n", "\t 894 & 2 & Myles, Mr. Thomas Francis & male & 62.0 & 0 & 0 & 240276 & 9.6875 & & Q \\\\\n", "\t 895 & 3 & Wirz, Mr. Albert & male & 27.0 & 0 & 0 & 315154 & 8.6625 & & S \\\\\n", "\t 896 & 3 & Hirvonen, Mrs. Alexander (Helga E Lindqvist) & female & 22.0 & 1 & 1 & 3101298 & 12.2875 & & S \\\\\n", "\t 897 & 3 & Svensson, Mr. Johan Cervin & male & 14.0 & 0 & 0 & 7538 & 9.2250 & & S \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "PassengerId | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | \n", "|---|---|---|---|---|---|\n", "| 892 | 3 | Kelly, Mr. James | male | 34.5 | 0 | 0 | 330911 | 7.8292 | | Q | \n", "| 893 | 3 | Wilkes, Mrs. James (Ellen Needs) | female | 47.0 | 1 | 0 | 363272 | 7.0000 | | S | \n", "| 894 | 2 | Myles, Mr. Thomas Francis | male | 62.0 | 0 | 0 | 240276 | 9.6875 | | Q | \n", "| 895 | 3 | Wirz, Mr. Albert | male | 27.0 | 0 | 0 | 315154 | 8.6625 | | S | \n", "| 896 | 3 | Hirvonen, Mrs. Alexander (Helga E Lindqvist) | female | 22.0 | 1 | 1 | 3101298 | 12.2875 | | S | \n", "| 897 | 3 | Svensson, Mr. Johan Cervin | male | 14.0 | 0 | 0 | 7538 | 9.2250 | | S | \n", "\n", "\n" ], "text/plain": [ " PassengerId Pclass Name Sex Age \n", "1 892 3 Kelly, Mr. James male 34.5\n", "2 893 3 Wilkes, Mrs. James (Ellen Needs) female 47.0\n", "3 894 2 Myles, Mr. Thomas Francis male 62.0\n", "4 895 3 Wirz, Mr. Albert male 27.0\n", "5 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0\n", "6 897 3 Svensson, Mr. Johan Cervin male 14.0\n", " SibSp Parch Ticket Fare Cabin Embarked\n", "1 0 0 330911 7.8292 Q \n", "2 1 0 363272 7.0000 S \n", "3 0 0 240276 9.6875 Q \n", "4 0 0 315154 8.6625 S \n", "5 1 1 3101298 12.2875 S \n", "6 0 0 7538 9.2250 S " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(test)" ] }, { "cell_type": "markdown", "metadata": { "_cell_guid": "4de42a6c-db16-edd8-cdb5-46f5f47698f7", "_uuid": "b68939ee570989916c489bffde89d2a857b6923a" }, "source": [ "## Baseline Model: No Survivors\n", "- The Titanic problem is one of classification, and often the simplest baseline of all 0/1 is an appropriate baseline.\n", "- Even if you aren't familiar with the history of the tragedy, by checking out the [Wikipedia Page](https://en.wikipedia.org/wiki/RMS_Titanic) we can quickly see that the majority of people (68%) died.\n", "- As a result, our baseline model will be for no survivors." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "_cell_guid": "bcff150d-cbff-3c84-3eea-564df3c43b7b", "_uuid": "4bb023cb116910bb2121c7f356d4e57de4b3ffa2", "collapsed": true }, "outputs": [], "source": [ "test[\"Survived\"] <- 0" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "_cell_guid": "6c95627c-c1eb-aa34-f4b7-32b8ea7ae61c", "_uuid": "822074cd1a3eda10ddcb994287f9986cae917933", "collapsed": true }, "outputs": [], "source": [ "submission <- test[,c(\"PassengerId\", \"Survived\")]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "_cell_guid": "2241735d-8164-32f2-94ec-6ec45dacb145", "_uuid": "9c494660e043f9774f099ceeb405dfa8d37e1e70" }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
PassengerIdSurvived
8920
8930
8940
8950
8960
8970
\n" ], "text/latex": [ "\\begin{tabular}{r|ll}\n", " PassengerId & Survived\\\\\n", "\\hline\n", "\t 892 & 0 \\\\\n", "\t 893 & 0 \\\\\n", "\t 894 & 0 \\\\\n", "\t 895 & 0 \\\\\n", "\t 896 & 0 \\\\\n", "\t 897 & 0 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "PassengerId | Survived | \n", "|---|---|---|---|---|---|\n", "| 892 | 0 | \n", "| 893 | 0 | \n", "| 894 | 0 | \n", "| 895 | 0 | \n", "| 896 | 0 | \n", "| 897 | 0 | \n", "\n", "\n" ], "text/plain": [ " PassengerId Survived\n", "1 892 0 \n", "2 893 0 \n", "3 894 0 \n", "4 895 0 \n", "5 896 0 \n", "6 897 0 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(submission)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "_cell_guid": "1329809f-7aed-c67e-383c-8d71e5c7c4ac", "_uuid": "26f53c7376bea4297903b499776401d3b240cd74", "collapsed": true }, "outputs": [], "source": [ "# Write the solution to file\n", "write.csv(submission, file = 'nosurvivors.csv', row.names = F)" ] }, { "cell_type": "markdown", "metadata": { "_cell_guid": "325683d2-2aa7-96a9-45ec-edf46c69f2da", "_uuid": "09f9eb8927ddb8bbee7b55103b707953e925c7f1" }, "source": [ "## The First Rule of Shipwrecks\n", "- You may have seen it in a movie or read it in a novel, but [women and children first](https://en.wikipedia.org/wiki/Women_and_children_first) has at it's roots something that could provide our first model.\n", "- Now let's recode the `Survived` column based on whether was a man or a woman. \n", "- We are using conditionals to *select* rows of interest (for example, where test['Sex'] == 'male') and recoding appropriate columns." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "_cell_guid": "710483a5-7a49-a018-610a-c0968c44479c", "_uuid": "8b279e9be63feaf0bb5b946e3d32cd752b195e7f", "collapsed": true }, "outputs": [], "source": [ "#Here we can code it as Survived, but if we do so we will overwrite our other prediction. \n", "#Instead, let's code it as PredGender\n", "\n", "test[test$Sex == \"male\", \"PredGender\"] <- 0\n", "test[test$Sex == \"female\", \"PredGender\"] <- 1" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "_cell_guid": "078e3827-8f89-59ae-ca2d-66fa36bc79eb", "_uuid": "c0a65b6956267bf39b847741501dde9a30f22272" }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
PassengerIdSurvived
8920
8931
8940
8950
8961
8970
\n" ], "text/latex": [ "\\begin{tabular}{r|ll}\n", " PassengerId & Survived\\\\\n", "\\hline\n", "\t 892 & 0 \\\\\n", "\t 893 & 1 \\\\\n", "\t 894 & 0 \\\\\n", "\t 895 & 0 \\\\\n", "\t 896 & 1 \\\\\n", "\t 897 & 0 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "PassengerId | Survived | \n", "|---|---|---|---|---|---|\n", "| 892 | 0 | \n", "| 893 | 1 | \n", "| 894 | 0 | \n", "| 895 | 0 | \n", "| 896 | 1 | \n", "| 897 | 0 | \n", "\n", "\n" ], "text/plain": [ " PassengerId Survived\n", "1 892 0 \n", "2 893 1 \n", "3 894 0 \n", "4 895 0 \n", "5 896 1 \n", "6 897 0 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "submission = test[,c(\"PassengerId\", \"PredGender\")]\n", "#This will Rename the survived column\n", "names(submission)[2] <- \"Survived\"\n", "head(submission)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
PassengerIdnew
8920
8931
8940
8950
8961
8970
8981
8990
9001
9010
9020
9030
9041
9050
9061
9071
9080
9090
9101
9111
9120
9130
9141
9150
9161
9170
9181
9190
9200
9210
12800
12810
12820
12831
12840
12850
12860
12871
12880
12891
12900
12910
12921
12930
12941
12950
12960
12970
12980
12990
13001
13011
13021
13031
13041
13050
13061
13070
13080
13090
\n" ], "text/latex": [ "\\begin{tabular}{r|ll}\n", " PassengerId & new\\\\\n", "\\hline\n", "\t 892 & 0 \\\\\n", "\t 893 & 1 \\\\\n", "\t 894 & 0 \\\\\n", "\t 895 & 0 \\\\\n", "\t 896 & 1 \\\\\n", "\t 897 & 0 \\\\\n", "\t 898 & 1 \\\\\n", "\t 899 & 0 \\\\\n", "\t 900 & 1 \\\\\n", "\t 901 & 0 \\\\\n", "\t 902 & 0 \\\\\n", "\t 903 & 0 \\\\\n", "\t 904 & 1 \\\\\n", "\t 905 & 0 \\\\\n", "\t 906 & 1 \\\\\n", "\t 907 & 1 \\\\\n", "\t 908 & 0 \\\\\n", "\t 909 & 0 \\\\\n", "\t 910 & 1 \\\\\n", "\t 911 & 1 \\\\\n", "\t 912 & 0 \\\\\n", "\t 913 & 0 \\\\\n", "\t 914 & 1 \\\\\n", "\t 915 & 0 \\\\\n", "\t 916 & 1 \\\\\n", "\t 917 & 0 \\\\\n", "\t 918 & 1 \\\\\n", "\t 919 & 0 \\\\\n", "\t 920 & 0 \\\\\n", "\t 921 & 0 \\\\\n", "\t ⋮ & ⋮\\\\\n", "\t 1280 & 0 \\\\\n", "\t 1281 & 0 \\\\\n", "\t 1282 & 0 \\\\\n", "\t 1283 & 1 \\\\\n", "\t 1284 & 0 \\\\\n", "\t 1285 & 0 \\\\\n", "\t 1286 & 0 \\\\\n", "\t 1287 & 1 \\\\\n", "\t 1288 & 0 \\\\\n", "\t 1289 & 1 \\\\\n", "\t 1290 & 0 \\\\\n", "\t 1291 & 0 \\\\\n", "\t 1292 & 1 \\\\\n", "\t 1293 & 0 \\\\\n", "\t 1294 & 1 \\\\\n", "\t 1295 & 0 \\\\\n", "\t 1296 & 0 \\\\\n", "\t 1297 & 0 \\\\\n", "\t 1298 & 0 \\\\\n", "\t 1299 & 0 \\\\\n", "\t 1300 & 1 \\\\\n", "\t 1301 & 1 \\\\\n", "\t 1302 & 1 \\\\\n", "\t 1303 & 1 \\\\\n", "\t 1304 & 1 \\\\\n", "\t 1305 & 0 \\\\\n", "\t 1306 & 1 \\\\\n", "\t 1307 & 0 \\\\\n", "\t 1308 & 0 \\\\\n", "\t 1309 & 0 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "PassengerId | new | \n", "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", "| 892 | 0 | \n", "| 893 | 1 | \n", "| 894 | 0 | \n", "| 895 | 0 | \n", "| 896 | 1 | \n", "| 897 | 0 | \n", "| 898 | 1 | \n", "| 899 | 0 | \n", "| 900 | 1 | \n", "| 901 | 0 | \n", "| 902 | 0 | \n", "| 903 | 0 | \n", "| 904 | 1 | \n", "| 905 | 0 | \n", "| 906 | 1 | \n", "| 907 | 1 | \n", "| 908 | 0 | \n", "| 909 | 0 | \n", "| 910 | 1 | \n", "| 911 | 1 | \n", "| 912 | 0 | \n", "| 913 | 0 | \n", "| 914 | 1 | \n", "| 915 | 0 | \n", "| 916 | 1 | \n", "| 917 | 0 | \n", "| 918 | 1 | \n", "| 919 | 0 | \n", "| 920 | 0 | \n", "| 921 | 0 | \n", "| ⋮ | ⋮ | \n", "| 1280 | 0 | \n", "| 1281 | 0 | \n", "| 1282 | 0 | \n", "| 1283 | 1 | \n", "| 1284 | 0 | \n", "| 1285 | 0 | \n", "| 1286 | 0 | \n", "| 1287 | 1 | \n", "| 1288 | 0 | \n", "| 1289 | 1 | \n", "| 1290 | 0 | \n", "| 1291 | 0 | \n", "| 1292 | 1 | \n", "| 1293 | 0 | \n", "| 1294 | 1 | \n", "| 1295 | 0 | \n", "| 1296 | 0 | \n", "| 1297 | 0 | \n", "| 1298 | 0 | \n", "| 1299 | 0 | \n", "| 1300 | 1 | \n", "| 1301 | 1 | \n", "| 1302 | 1 | \n", "| 1303 | 1 | \n", "| 1304 | 1 | \n", "| 1305 | 0 | \n", "| 1306 | 1 | \n", "| 1307 | 0 | \n", "| 1308 | 0 | \n", "| 1309 | 0 | \n", "\n", "\n" ], "text/plain": [ " PassengerId new\n", "1 892 0 \n", "2 893 1 \n", "3 894 0 \n", "4 895 0 \n", "5 896 1 \n", "6 897 0 \n", "7 898 1 \n", "8 899 0 \n", "9 900 1 \n", "10 901 0 \n", "11 902 0 \n", "12 903 0 \n", "13 904 1 \n", "14 905 0 \n", "15 906 1 \n", "16 907 1 \n", "17 908 0 \n", "18 909 0 \n", "19 910 1 \n", "20 911 1 \n", "21 912 0 \n", "22 913 0 \n", "23 914 1 \n", "24 915 0 \n", "25 916 1 \n", "26 917 0 \n", "27 918 1 \n", "28 919 0 \n", "29 920 0 \n", "30 921 0 \n", "⋮ ⋮ ⋮ \n", "389 1280 0 \n", "390 1281 0 \n", "391 1282 0 \n", "392 1283 1 \n", "393 1284 0 \n", "394 1285 0 \n", "395 1286 0 \n", "396 1287 1 \n", "397 1288 0 \n", "398 1289 1 \n", "399 1290 0 \n", "400 1291 0 \n", "401 1292 1 \n", "402 1293 0 \n", "403 1294 1 \n", "404 1295 0 \n", "405 1296 0 \n", "406 1297 0 \n", "407 1298 0 \n", "408 1299 0 \n", "409 1300 1 \n", "410 1301 1 \n", "411 1302 1 \n", "412 1303 1 \n", "413 1304 1 \n", "414 1305 0 \n", "415 1306 1 \n", "416 1307 0 \n", "417 1308 0 \n", "418 1309 0 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "names(submission)[2]<-\"new\"\n", "submission" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "_cell_guid": "9f63501b-df2a-0d41-d4dd-3d0e28fea743", "_uuid": "b0d72f03f864bde6cd405e1bcda795c74764ccf4", "collapsed": true }, "outputs": [], "source": [ "write.csv(submission, file = 'womensurvive.csv', row.names = F)" ] } ], "metadata": { "_change_revision": 0, "_is_fork": false, "anaconda-cloud": {}, "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 2 }