All Notebooks
| Session | Notebooks |
|---|---|
| 2 | Python Overview - Basic Data Structures - Numpy - Pandas - |
| 4 | Conditional-Loops - Functions - Null Values - Groupby and Pivot Tables - Kaggle Baseline - |
| 6 | Twitter - Web Mining - Visualizations - Seaborn - Strings - Regular Expressions - Feature Dummies - Matplotlib - |
| 8 | The Simplest Neural Network with Numpy - Train Test Split - Introduction to Logistic Regression - K Nearest Neighbor - |
| 9 | |
| 10 | Introduction to R - Local Files - Data Structures - Dataframes - Functions - Conditional-Loops - Aggregation and Merge - Tidyvere - Titanic - |
| 12 | Regression - Matrix - Boston Housing - Ridge and Lasso - Stats Models - |
| 14 | PCA - PCA Alt - Cluster Analysis - Feature Selection and Importance - |
| 16 | Titanic Feature Creation - Corpus Simple - Scikit Learn Text - What’s Cooking Python - Bag of Popcorn Bag of Words - Sentiment - Overview of NLP - FAST.ai NLP - |
| 18 | Intoduction to MapReduce - Introduction to Spark - Introduction to Time Series - Rossman Store Sales - |
| 20 | Neural Networks - Tensors - Pytorch IRIS - Covnet - Pytorch Mnist - Regression - Titanic FastAI - Ludwig - Evaluation - |
| 22 | TF-Keras - TF-training - TF-data - TF-CNN - TF-RNN - TF-NLP - TF-Autoencoder and Gan - |