MGMT6560 Fall 19

  • Home
  • Search
  • Schedule
    • All Readings
    • Session 1
    • Session 2
    • Session 3
    • Session 4
    • Session 5
    • Session 6
    • Session 7
    • Session 8
    • Session 9
    • Session 10
    • Session 11
    • Session 12
    • Session 13
    • Session 14
    • Session 15
    • Session 16
    • Session 17
    • Session 18
    • Session 19
    • Session 20
    • Session 21
    • Session 22
    • Session 23
    • Session 24
    • Session 25
    • Session 26
    • Session 27
    • Session 28
    • Session 29
  • Notebooks
    • Python Overview
    • Basic Data Structures
    • Numpy
    • Pandas
    • Conditional-Loops
    • Functions
    • Null Values
    • Groupby and Pivot Tables
    • Kaggle Baseline
    • Twitter
    • Web Mining
    • Visualizations - Seaborn
    • Strings - Regular Expressions
    • Feature Dummies
    • Matplotlib
    • The Simplest Neural Network with Numpy
    • Train Test Split
    • Introduction to Logistic Regression
    • K Nearest Neighbor
    • Assignment 5
    • Introduction to R
    • Local Files
    • Data Structures
    • Dataframes
    • Functions
    • Conditional-Loops
    • Aggregation and Merge
    • Tidyvere
    • Titanic
    • Regression - Matrix
    • Boston Housing
    • Ridge and Lasso
    • Stats Models
    • PCA
    • PCA Alt
    • Cluster Analysis
    • Feature Selection and Importance
    • Titanic Feature Creation
    • Corpus Simple
    • Scikit Learn Text
    • What's Cooking Python
    • Bag of Popcorn Bag of Words
    • Sentiment
    • Overview of NLP
    • FAST.ai NLP
    • Intoduction to MapReduce
    • Introduction to Spark
    • Introduction to Time Series
    • Rossman Store Sales
    • Neural Networks
    • Tensors
    • Pytorch IRIS
    • Covnet
    • Pytorch Mnist
    • Regression
    • Titanic FastAI
    • Ludwig
    • Evaluation
    • TF-Keras
    • TF-training
    • TF-data
    • TF-CNN
    • TF-RNN
    • TF-NLP
    • TF-Autoencoder and Gan
  • Assignments
  • Grading
  • Google Colab
  • Dropbox - Presentations/Files
  • Github - Class Content
  • Github - Assignments
  • Piazza (Section 2 Communications)
  • Slack (Section 1 Communications)

Powered by Jupyter Book